Search results

Search for "iron catalysis" in Full Text gives 10 result(s) in Beilstein Journal of Organic Chemistry.

Radical ligand transfer: a general strategy for radical functionalization

  • David T. Nemoto Jr,
  • Kang-Jie Bian,
  • Shih-Chieh Kao and
  • Julian G. West

Beilstein J. Org. Chem. 2023, 19, 1225–1233, doi:10.3762/bjoc.19.90

Graphical Abstract
  • in linear internal alkenes. Building on this key iron catalysis result, our group and that of Shi contemporaneously reported the photochemical diazidation of alkenes using stoichiometric iron and no external oxidant or ancillary ligand, providing a simple protocol for the preparation of vicinal
PDF
Album
Perspective
Published 15 Aug 2023

Friedel–Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs)

  • Swantje Lerch,
  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2023, 19, 212–216, doi:10.3762/bjoc.19.20

Graphical Abstract
  • acylation; homogeneous catalysis; ionic liquids; iron catalysis; TAAILs; Introduction The Friedel–Crafts acylation is one of the oldest metal-catalyzed reactions in organic chemistry [1] and allows for the synthesis of a broad range of diverse compounds [2][3][4][5]. Starting from electron-rich aromatic
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • exogenous N- or P-based ligands, highlighting the efficiency of iron as a credible alternative to noble metal catalysis in cross-coupling chemistry [13]. Cahiez’ pioneering work highlighted the potential of iron catalysis in organic chemistry and generated a new interest for the study of iron-catalyzed
PDF
Album
Perspective
Published 14 Feb 2023

Iron-catalyzed domino coupling reactions of π-systems

  • Austin Pounder and
  • William Tam

Beilstein J. Org. Chem. 2021, 17, 2848–2893, doi:10.3762/bjoc.17.196

Graphical Abstract
  • , homogenous iron catalysis they bear the chance to enable coupling reactions that rival that of noble-metal-catalysis. This review provides an overview of iron-catalyzed domino coupling reactions of π-systems. The classifications and reactivity paradigms examined should assist readers and provide guidance for
  • first Fe-catalyzed cross-coupling reaction between Grignard reagents and vinyl halides [37]. As of late, the development of Fe-catalyzed cross-coupling methodology and mechanistic rationales have burgeoned [38]. Today, the rate of growth within the field of iron catalysis is much greater than that
  • production of byproducts. Iron catalysis offers an attractive, and sustainable, approach to the aforementioned economic and ecological concerns. In the same vein, cascade reactions are important tools to meet such challenges currently facing synthetic chemists and have received considerable attention as of
PDF
Album
Review
Published 07 Dec 2021

On the application of 3d metals for C–H activation toward bioactive compounds: The key step for the synthesis of silver bullets

  • Renato L. Carvalho,
  • Amanda S. de Miranda,
  • Mateus P. Nunes,
  • Roberto S. Gomes,
  • Guilherme A. M. Jardim and
  • Eufrânio N. da Silva Júnior

Beilstein J. Org. Chem. 2021, 17, 1849–1938, doi:10.3762/bjoc.17.126

Graphical Abstract
  • that has been done so far. From the simplest iron salts to the most enantiospecific complex forms, iron catalysis is playing an important role for the development of additional accessible C–H activation methods. From these perspectives it can be assumed that in the near future iron will be one of the
PDF
Album
Review
Published 30 Jul 2021

Recent advances in transition-metal-catalyzed incorporation of fluorine-containing groups

  • Xiaowei Li,
  • Xiaolin Shi,
  • Xiangqian Li and
  • Dayong Shi

Beilstein J. Org. Chem. 2019, 15, 2213–2270, doi:10.3762/bjoc.15.218

Graphical Abstract
  • for the difluoromethylation of aryl-substituted acrylic acids was also achieved by Liu and co-workers. The HCF2-substituted E-alkenes were finally obtained with iron catalysis and zinc difluoromethanesulfinate ((CF2HSO2)2Zn, Baran reagent). Also, the authors proved that the formation of the Cvinyl–CF3
PDF
Album
Review
Published 23 Sep 2019

Addition of dithi(ol)anylium tetrafluoroborates to α,β-unsaturated ketones

  • Yu-Chieh Huang,
  • An Nguyen,
  • Simone Gräßle,
  • Sylvia Vanderheiden,
  • Nicole Jung and
  • Stefan Bräse

Beilstein J. Org. Chem. 2018, 14, 515–522, doi:10.3762/bjoc.14.37

Graphical Abstract
  • procedure for the synthesis of diene dithioacetals. A similar reaction using α-carbonyl substituted ketene dithioacetals for an addition to alkynes under iron catalysis was shown by Liu et al. before and was used for the synthesis of δ-lactams and lactones by 6-endo annulation [35]. Our approach reveals
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2018

Iron complexes of tetramine ligands catalyse allylic hydroxyamination via a nitroso–ene mechanism

  • David Porter,
  • Belinda M.-L. Poon and
  • Peter J. Rutledge

Beilstein J. Org. Chem. 2015, 11, 2549–2556, doi:10.3762/bjoc.11.275

Graphical Abstract
  • -nitroso intermediate. Asymmetric induction is not observed using the chiral tetramine ligand (+)-(2R,2′R)-1,1′-bis(2-pyridylmethyl)-2,2′-bipyrrolidine ((R,R′)-PDP). Keywords: CH activation; hydroxyamination; iron catalysis; nitroso-ene; Introduction The selective functionalization of C–H bonds is an
  • cyclohexene (7) [45][46][47], we wished to explore potential C–N bond formation at this position using iron catalysis. Combining cyclohexene (7, in excess) with N-Boc-hydroxylamine (8) as the nitrogen source and the iron complex FeTPA (4) or FeBPMEN (5) afforded a mixture of products: the allylic
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2015

Exploration of C–H and N–H-bond functionalization towards 1-(1,2-diarylindol-3-yl)tetrahydroisoquinolines

  • Michael Ghobrial,
  • Marko D. Mihovilovic and
  • Michael Schnürch

Beilstein J. Org. Chem. 2014, 10, 2186–2199, doi:10.3762/bjoc.10.226

Graphical Abstract
  • –Hartwig coupling; C–C coupling; C–H functionalization; iron catalysis; regioselective arylation; Introduction 1,2,3,4-Tetrahydroisoquinolines (THIQs) are common substructures in natural products [1]. The structural motif of 1-(indol-3-yl)-THIQ is also found in compounds with biological activity, for
  • intermediate 7 through routes C and D As it was the case for the synthesis of 6, compounds of type 4 can be used as starting material for the synthesis of intermediates 7 (Scheme 2, first step in route C). In this case we expected N-arylation to proceed favorably under iron catalysis due to a largely relieved
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2014

Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

  • Grégory Landelle,
  • Armen Panossian,
  • Sergiy Pazenok,
  • Jean-Pierre Vors and
  • Frédéric R. Leroux

Beilstein J. Org. Chem. 2013, 9, 2476–2536, doi:10.3762/bjoc.9.287

Graphical Abstract
  • regenerates the copper catalyst, thus allowing the catalytic turnover (Figure 1). 2.2 Iron catalysis Similarly to the work of J. Hu and colleagues using copper catalysis, the group of Z.-Q. Liu reported on the decarboxylative difluoromethylation of α,β-unsaturated carboxylic acids. However, the latter used
PDF
Album
Review
Published 15 Nov 2013
Other Beilstein-Institut Open Science Activities